
E

n

a

bl

e

G

in

g

e

r

C

a

n

n

t

E

n

a

b

l

e

r

Enable GingerCannot connect to Ginger Check your internet connection

or reload the browserDisable in this text �eldRephraseRephrase current sentenceEdit in Ginger×

The six rules of secure
software development
Code Responsibly:
Developers' Blueprint for Secure Coding

Cydrill.com

The six rules of secure software development

Cydrill 2024

Software is more important than ever – our connected world’s beating heart is made of it.

Unfortunately, as the importance of software increases, so does the activity of cybercriminals and

other bad actors trying to make a pro�t at the developers’ expense. The Department of Homeland

Security has long claimed that

. Many developers are unarmed against this onslaught – the number of new

vulnerabilities discovered in software has been steadily going up each year since 2016 and this trend

is . If anything, the process is accelerating at a worrying rate.

But this doesn’t mean the situation is hopeless – far from it! Many of these security problems have

been known for a long time and we have a long list of industry best practices to help deal with them.

In this eBook we introduce our six rules of secure software development that present the most

important things you can do right now to stem the tide.

90% of security incidents are a consequence of defects in the design

or code of software

showing no signs of slowing down

1 - 151 - 15

https://cydrill.com/
https://www.cisa.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false

Cydrill.com

Table Of Contents

Shift left 3

Adopt a secure development lifecycle approach 4

Cover your entire IT ecosystem 6

Move from reaction to prevention 9
Mindset matters more than tech 10

Invest in secure coding training 12
About Cydrill 15

The six rules of secure software development

https://cydrill.com/
https://app.designrr.io/projectHtml/1431943?token=836aa719885ad06337bafa88a96a4e0b&embed_fonts=&pdf=1
https://app.designrr.io/projectHtml/1431943?token=836aa719885ad06337bafa88a96a4e0b&embed_fonts=&pdf=1
https://app.designrr.io/projectHtml/1431943?token=836aa719885ad06337bafa88a96a4e0b&embed_fonts=&pdf=1
https://app.designrr.io/

Cydrill.com 3 - 153 - 15

The six rules of secure software development

1. Shift left
The rule of ʻshift left’ has turned into a bit of a buzzword in the last 7-8 years. Like the rest of these six

rules, this is not a great revelation or a closely-held secret – in fact, the concept of shift-left testing

was originally . Back then, ʻshift left’ referred to

testing early and often to �nd defects as early in the SDLC as possible – literally shifting activities to

the left in the V-model of software development.

coined in 2001 in a Dr. Dobb’s article by Larry Smith

So, what does this have to do with security?

The idea is simple: move security considerations earlier in the software development lifecycle.

Obviously, the earlier a security issue is discovered, the cheaper it is to �x it. Programmers shouldn’t

just rely on security experts to “do security stu�” a few weeks before shipping the code, but each

team member should be actively involved with preventing, �nding, and eliminating potential

vulnerabilities during development. Of course, this only works if developers actually have the

necessary security expertise! This makes understanding the potential threats and best practices

(and thus, secure coding) absolutely critical for everyone: all architects, developers, testers and ops

folks, not just a few chosen security champions.

This makes understanding the potential threats and best practices (and thus, secure coding)

absolutely critical for everyone: all architects, developers, testers and ops folks, not just a few

chosen security champions.

https://cydrill.com/
https://www.drdobbs.com/shift-left-testing/184404768

Cydrill.com

2. Adopt a secure development lifecycle approach

The six rules of secure software development

It is tempting to deal with software security as an ʻadd-on’ to the process: a brief penetration test

just before release, or maybe a two-week security review at the end of a project. But as discussed

before in the context of shifting left, the later we deal with a security issue, the more expensive it

gets. And, unfortunately, a lot of security issues stem from decisions made at an early stage of

development such as design or even requirements speci�cation!

We can solve this conundrum by building security in: instead of just ʻdoing security’ at a certain

point in the development lifecycle, we introduce security activities throughout the entire software

development lifecycle (SDLC). This is an established best practice popularized within Microsoft via

the (Security Development Lifecycle) as well as security experts via the (Build

Security In Maturity Model) or the (Security Assurance Maturity Model):

MS SDL BSIMM

OWASP SAMM

4 - 15

 is the most prescriptive of the three – which makes sense, considering it was a process

that Microsoft originally developed for internal use in the early ����s. Its 12 main practices cover

security training of all stakeholders, the creation and maintenance of security requirements,

threat modeling via data �ow diagrams (DFD), secure use of cryptography, managing the risk of

third-party components, heavy use of automated tools (SAST, DAST, SCA) and incident response.

MS SDL

 , on the other hand, is a descriptive model. It is released every year, containing data about what

companies are doing these days to improve their security and provides a scorecard to measure your

company’s security posture. Then you can �gure out which of those activities are most reasonable to

implement in your speci�c context. The activities are grouped into 4 domains: Governance (managing a

software security initiative with training as one of its three pillars) Intelligence (threat modeling and

proactive security guidance), SSDL touchpoints (building security into development via design and code

reviews as well as security testing), and Deployment (secure con�guration and maintenance).

BSIMM

 is also a prescriptive model, giving concrete guidance in various categories, depending

on what maturity level (1 to 3) the company is aiming for in the area of Governance (improving security

at the organizational level– via education and guidance among others), Design (security requirements,

secure design and threat modeling), Implementation (secure build and deployment including

vulnerability management), Veri�cation (manual and automated security testing and reviews), and

Operations (incident response, hardening and patch management).

OWASP SAMM

https://cydrill.com/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html
https://owaspsamm.org/

Cydrill.com

The six rules of secure software development

As for validating the real-world use of these models: the longitudinal analysis in BSIMM 14 (2023)

shows that companies are steadily improving their security posture. In particular, after adopting

BSIMM, companies tend to implement a secure SDLC, scale it with the development of security

champions, create (and enforce) a security policy, and manage the risk of third-party components.

The two priorities after these are threat modeling and security training for engineering teams. As a

matter of fact, training engineers on security is emphasized in all of the above models: it is the very

�rst practice in SDL and is part of Governance in both BSIMM and SAMM.

As a �nal note, penetration testing is often brought up as a one-size-�ts-all solution. It is true that a

quick and focused test to identify vulnerabilities in the system is useful as an ʻacid test’ before

release. But over-reliance on penetration testing is , and it is not a real substitute for

secure software development! On the other hand, training developers in security is included in each

of these secure SDLC models, with good reason.

quite dangarous

5 - 15

https://cydrill.com/
https://cydrill.com/devops/penetration-testing-what-it-can-and-cannot-do/

Cydrill.com

Did you know?

These issues are exacerbated in the container world – for example, the study has

found that at the end of 2020, 80% of all images on Docker Hub were found to contain at least one

known vulnerability, with 51% of all images containing critical vulnerabilities!

ʻRed Kangaroo’

We like to say that

.

You de�nitely need to have vulnerability management processes in place to identify, assess, and deal

with vulnerabilities discovered in any of the program’s dependencies – and a strategy on how to

release security patches and even hot�xes if the situation calls for it.

“vulnerabilities in third-party code are not your fault, but they will de�nitely become your

problem”

6 - 15

The six rules of secure software development

3. Cover your entire IT ecosystem
When we’re talking about securing code, we don’t just mean the code speci�cally written by you –

but also all third-party code that’s included in the application.

 Zahan et al (2022) points out that 80% of all code in modern software comes from third-party

packages! That is a massive attack surface, and ultimately the hackers don’t care where the weak

point in the system is and how it got there. If a third-party component is vulnerable, they’ll exploit it

just the same –as it happened with the Log�Shell vulnerability at the end of 2021 that impacted

almost every Java application – and thus, Java developer – in the world.

What are weak links in the npm supply

chain?

Not to mention that it is also lucrative for attackers to perform supply chain attacks: injecting

malicious code into one of the open-source packages (or replacing them entirely). This can be

di�cult to notice if the package in question is, maybe, a

 somewhere. The attack trends support this as well: according to the paper, supply

chain attacks against applications (not just talking about npm here!) have increased 650% in 2021

alone. The against the United States government was so impactful it

has as a whole.

forgotten dependency-of-a-dependency-of-

a-dependency

SolarWinds supply chain attack

shaped the country’s cybersecurity strategy

https://cydrill.com/
https://www.algosec.com/blog/operation-red-kangaroo-industrys-first-dynamic-analysis-of-4m-public-docker-container-images/%22HYPERLINK%20%22https://www.prevasio.io/blog/operation-red-kangaroo-industrys-first-dynamic-analysis-of-4m-public-docker-container-images
https://dl.acm.org/doi/abs/10.1145/3510457.3513044
https://app.designrr.io/projectHtml/1431943?token=836aa719885ad06337bafa88a96a4e0b&embed_fonts=&pdf=1
https://cydrill.com/devops/supply-chain-attack-what-we-can-learn-from-solarwinds/
https://www.state.gov/announcing-the-release-of-the-administrations-national-cybersecurity-strategy/

Cydrill.com

The six rules of secure software development

7 - 15

4. Move from reaction to prevention
Discussing code security goes hand in hand with robustness and resilience. Resilience implies a

system that is not signi�cantly impacted by failures (limiting the amount of damage they can do,

and making it possible to recover from them), while robustness implies a system that anticipates

failures and prevents them from happening in the �rst place. Even though both of these are

important, preventing an incident is always better than reacting to an incident after the fact!

There are two philosophies to ensure robustness and resilience that are sometimes said to be

opposites of each other: design by contract and defensive programming.

Design by contract seems to be better for code e�ciency and maintainability – after all,

implementing defensive programming techniques requires writing additional code, which adds

complexity and is itself a potential source of bugs. But when we look at code security, the goal is to

reduce the attack surface and thus guard against intentional misuse, which is exactly what

defensive programming provides. Furthermore, reacting to a bad input after it’s already been

processed is much more dangerous than proactive input validation that can catch it beforehand.

This is recognized by many secure coding standards (see e.g. MISRA C:���� Directive 4.14)

Design by Contract (DbC) de�nes so-called contracts for functions to declare expected

preconditions, postconditions and invariants – and works under the assumption that these

contracts will not be broken. These contracts are frequently implemented via asserts (not

present in production code) and in case there is a failure at runtime, they are typically handled

via exceptions. In type-safe languages, DbC may be a built-in feature of the language itself that

won’t even allow compilation if the contracts can be violated. Rust is a good example for this.

Defensive programming assumes that any interaction with the system may be incorrect,

erroneous, or even malicious. To this end, the developer should explicitly implement input

validation in functions that process user input of any kind. Input validation means the

implementation of checks that verify that the received input corresponds to the developer’s

expectations. This should happen in the context of the speci�c function, “there and then”,

right before the input is to be used. If the input fails these checks, it is rejected, so that no

piece of code will be executed with unexpected inputs it is not prepared to handle.

https://cydrill.com/

Cydrill.com

The six rules of secure software development

8 - 15

Just to reiterate: in security, preventing an error is always better than catching the

error after it has already happened!

As an example, consider processing an XML document

describing a money transfer. Following DbC, we can

de�ne a ʻcontract’ (an XML schema) and make sure the

input conforms to it. This prevents many di�erent attacks

(e.g. the attacker duplicating tags, or specifying a

negative value for the money transfer). But not every kind

of bad input can be covered by a schema. Just a few

examples: the attacker can send us a document that

references a nonexistent user, performs XXE, contains an

invalid transaction date (e.g. 2 years in the future), or

performs a cross-site scripting attack against the

recipient by specifying a comment like

<script>alert(ʻhacked’!)</script>.

https://cydrill.com/

Cydrill.com

The six rules of secure software development

9 - 15

This doesn’t mean that design by contract is bad – in fact, those techniques are very useful, but they

need to be combined with defensive programming techniques to e�ectively protect against

vulnerabilities. Whenever code security is concerned, input validation is perhaps the single most

critical thing you can do according to experts – it’s the �rst category in the

 and its comprise the root cause of many other vulnerability types; it is

 list, and also has its own !

Even redundancy isn’t necessarily a dirty word here – in fact, validating the same input multiple

times (in di�erent parts of the code) is an example of , which is an essential

protection principle. For example, even if the XML schema ensures that the money transfer value

isn’t negative, the function doing the transfer should still have a sanity check on the value to be

transferred. We should simply accept that everyone makes mistakes, and the code should be always

prepared for that.

Seven Pernicious

Kingdoms improper use #5 on

the OWASP Proactive Controls (OPC) cheat sheet on OWASP

defense in depth

https://cydrill.com/
https://ieeexplore.ieee.org/document/1556543
https://cwe.mitre.org/data/definitions/20.html
https://owasp.org/www-project-proactive-controls/v3/en/c5-validate-inputs
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

Cydrill.com

Some companies are looking at AI to solve this problem by automatically identifying vulnerabilities

or just making sure all code is secure. Putting aside the

, this ultimately relies on these AIs being able to write secure code by default.

But right now, that goal is far out of reach. Let’s face it: we’re still light-years away from achieving

�awless AI-generated code. Consider that the models are mainly trained on the ʻwisdom of the

masses’: open-source projects and popular third-party Q&A sites such as Stack Over�ow. Such

sources have been hotbeds of vulnerable code examples in the past (see

).

nascent and vulnerable nature of machine

learning applications

Stack Over�ow Considered

Harmful? The Impact of Copy&Paste on Android Application Security, Fischer et al, 2017

As always: garbage in means garbage out.

The six rules of secure software development

10 - 15

5. Mindset matters more than tech
If you ask anyone “what do you do to prevent cyberattacks?”, it is likely the answer will be “�rewalls

and IDS”. It’s true that web application �rewalls and intrusion detection systems are important (see

A� in the OWASP Top Ten 2021!),

They may mitigate the e�ects of already existing vulnerabilities and make exploitation of these

vulnerabilities more di�cult, but even in that arena the attackers are constantly coming up with

new ways to get around perimeter defenses (e.g.) and evade

WAF �lters to deliver their payload.

As a matter of fact,

but they won’t solve the problem of vulnerable code.

Server-side Request Forgery aka SSRF

no �rewall could stop the exploitation of zero-days like Heartbleed or Log�Shell before

it was already too late.

But how do we deal with vulnerable code, especially in codebases that have been around for

decades?

The sheer amount of code that developers must deal with is increasing rapidly. Sourcegraph’s

 (2020) shows that developers have to work with remarkably more code than

ever before: 51% of participants claimed the amount of code at a company has increased by a factor

of 100 compared to the previous 10 years, and over 90% of them said coding velocity and the value

of the code itself has also increased drastically. In order to �nd, �x, and prevent vulnerabilities,

developers need to be responsible for them and take ownership of the code in question – that can be

a challenge by itself in these massive codebases.

And then there is legacy code�

The

Emergence of Big Code

https://cydrill.com/
https://cydrill.com/cyber-security/machine-learning-security/
https://ieeexplore.ieee.org/document/7958574
https://cydrill.com/owasp/ssrf-an-old-friend-in-the-limelight/
https://info.sourcegraph.com/hubfs/CTA%20assets/sourcegraph-big-code-survey-report.pdf

Cydrill.com

The six rules of secure software development

11 - 15

On the other hand, it doesn’t help to put the responsibility for security on developers’ shoulders

while failing to give them the necessary resources and support for it.

 pointed out in 2019 that even though 68% of security professionals believe it’s a

programmer’s job to write secure code, they also think less than half of them can actually spot

security holes.

GitLab’s yearly from 2022 underscored this as well: as DevOps transforms

into DevSecOps, security is becoming the #1 concern. More importantly, now that 43% of “Sec”

teams are fully responsible for security, despite the vast variety of tools at their disposal they feel

much less optimistic and con�dent about this responsibility than the “Dev” and “Ops” part of the

triad (56% vs 76%!). Automation is not going to solve the problem by itself. It isn’t a coincidence that

DevSecOps folks sometimes call SAST tools ʻFalse Positives as a Service’.

Bruce Schneier

Global Developer Report

Tools are handy and valuable, but there is no substitute for human expertise.

https://cydrill.com/
https://www.schneier.com/blog/archives/2019/07/software_develo.html
https://about.gitlab.com/blog/2022/08/23/gitlabs-2022-global-devsecops-survey-security-is-the-top-concern-investment/

Cydrill.com

This is also well re�ected in real-world

numbers. Is Secure Coding Education in the

Industry Needed? An Investigation Through

a Large Scale Survey (Gasiba et al, 2021)

indicates that over half of developers are

not aware of secure coding guidelines and

issues – furthermore, developers

overestimate their awareness of security

issues, leading to a false sense of security.

The six rules of secure software development

12 - 15

6. Invest in secure coding training
As we’ve seen so far, there are two challenges in cybersecurity today: how to deal with issues from

the past (unknown vulnerabilities in existing code, legacy code, and third-party code) and how to

deal with issues in the future (vulnerabilities in all code written by the developers from this point

on).

For the �rst question, we have lots of answers: various code analyzers, testing tools, and

vulnerability management. However, for the second question, the only realistic answer is writing

code that is free of such vulnerabilities. And that’s not something a tool can do for us.

The only solution is education: making developers aware of these security problems in

all phases of the SDLC and giving them the necessary mindset and skills so they will be

able to avoid them (and spot them in existing code).

The best method to address this discrepancy is through secure coding education supported with

hands-on exercises. Developers need to see vulnerable code in action, see the (often devastating)

consequences of vulnerability exploitation, and then actually �x the vulnerable code themselves.

Only this way will they acquire the needed skills and fully understand and retain knowledge about

these vulnerabilities.

https://cydrill.com/

Cydrill.com

The six rules of secure software development

CTF - Capture the �ag

Capture the �ag (CTF) events and platforms are popping up as a popular

alternative in this area. CTFs are popular when it comes to improving the o�ensive

skills of cyber security experts: they are fun (and gami�ed out-of-the-box), they

provide realistic hacking scenarios, and they help establish the ʻhacker mindset’.

But when it comes to defensive best practices and establishing company-wide

secure coding initiatives, they have pretty clear de�ciencies compared to real

training: a relative inability to cater to developers without prior experience in

security, weak (or even negative) motivation for developers less interested in

competition, and poor coverage of ʻless cool’ (but still critically important) security

issues.

13 - 15

https://cydrill.com/

Cydrill.com

The six rules of secure software development

14 - 15

Sometimes microlearning is also brought up as a possible solution: teaching about security issues in

small bite-sized (even just 5- or ��-minute) videos or brief activities that programmers can check

when they �rst encounter such an issue or just during their free time (if such a thing exists at all).

But secure coding is one of the areas where this doesn’t really work. As per Amy Fox’s 2016 article

:

In the context of secure coding, microlearning can be e�ective only as a reinforcement technique

once developers already know about vulnerabilities and best practices – in other words, once they

have already taken part in an in-depth training course.

Microlearning for E�ective Performance Management

“Microlearning is not a panacea for every training need. If an employee is learning

something for the �rst time, particularly a complex skill, individual coaching or another

form of more intensive training may be best. Microlearning often is best used for

reinforcement to help learning stick and to build up employees' skills.”

And that’s exactly what we believe in: with blended learning, developers should �rst establish a deep

foundation for secure coding in their programming language(s) of choice via an instructor-led

training course. And once this is achieved, they can follow it up with regular monthly ʻbite-sized’ e-

learning modules to keep their skills sharp and up to date.

Finally, a note about gami�ed capture the �ag (CTF) events and platforms. CTFs are popular when it

comes to improving the skills of cyber security experts: they are fun (and gami�ed out-of-the-box),

they provide realistic hacking scenarios, and they help establish the ʻhacker mindset’. But when it

comes to learning about secure coding, they have pretty clear de�ciencies compared to blended

learning: they tend to focus on ʻfun’ attack scenarios and thus ignore many common vulnerability

types, they aren’t adaptive to the needs of individual participants, and their competitive aspects can

actually have a negative e�ect on motivation. On the other hand, blended learning also drives high

engagement without having to lose the bene�ts of gami�cation. If you’re interested in the details,

we have analyzed these limitations in a separate article: CTF in secure coding education – a critical

look.

https://cydrill.com/
https://www.td.org/magazines/td-magazine/microlearning-for-effective-performance-management
https://cydrill.com/cyber-security/ctf-in-secure-coding-education-a-critical-look/

Cydrill.com

 Learn more Learn more
about our courses and learningabout our courses and learning

eenvironmentnvironment

The six rules of secure software developmentThe six rules of secure software development

15 - 15

About CydrillAbout Cydrill
Established in 2019 and recognized by Enterprise Security in 2021 as one of the top companiesEstablished in 2019 and recognized by Enterprise Security in 2021 as one of the top companies

shaping the cybersecurity landscape, Cydrill is on a mission to tackle the root cause of poor cyber-shaping the cybersecurity landscape, Cydrill is on a mission to tackle the root cause of poor cyber-

defense: inadequate coding practices.defense: inadequate coding practices.

Cydrill’s blended learning journey provides training in proactive and e�ective secure coding forCydrill’s blended learning journey provides training in proactive and e�ective secure coding for

developers from Fortune 500 companies all over the world. By combining instructor-led training, e-developers from Fortune 500 companies all over the world. By combining instructor-led training, e-

learning, hands-on labs, and gami�cation, Cydrill provides a novel and e�ective approach tolearning, hands-on labs, and gami�cation, Cydrill provides a novel and e�ective approach to

learning how to code securely.learning how to code securely.

https://cydrill.com/
https://cydrill.com/
https://cydrill.com/
https://cydrill.com/
https://cydrill.com/

