

 Code responsibly! https://cydrill.com/courses/

Code responsibly with generative AI
in Python

CYDPyWeb3dCop | 3 days | On-site or online | Hands-on

Your Web application written in Python works as intended, so you are done, right? But did
you consider feeding in incorrect values? 16Gbs of data? A null? An apostrophe? Negative
numbers, or specifically -1 or -2^31? Because that's what the bad guys will do – and the list
is far from complete.

Handling security needs a healthy level of paranoia, and this is what this course provides: a
strong emotional engagement by lots of hands-on labs and stories from real life, all to
substantially improve code hygiene. Mistakes, consequences, and best practices are our
blood, sweat and tears.

The curriculum goes through the common Web application security issues following the
OWASP Top Ten but goes far beyond it both in coverage and the details.

All this is put in the context of Python, and extended by core programming issues,
discussing security pitfalls of the programming language.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens.

Nothing.

This variant of the course deals extensively with how certain security problems in code are
handled by GitHub Copilot.

Through a number of hands-on labs participants will get first hand experience about how to
use Copilot responsibly, and how to prompt it to generate the most secure code. In some
cases it is trivial, but in most of the cases it is not; and in yet some other cases it is
basically impossible.

At the same time, the labs provide general experience with using Copilot in everyday coding
practice - what you can expect from it, and what are those areas where you shouldn't rely
on it.

https://cydrill.com/
https://cydrill.com/courses/

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 2

Cyber security skills and drills

32 LABS

13 CASE STUDIES

Audience
Python developers working on
Web applications

Group size
12 participants

Preparedness
General Python and Web
development

Outline
• Cyber security basics
• The OWASP Top Ten 2021
• Wrap up

Standards and references
OWASP, CWE and Fortify Taxonomy

What you'll have learned
• Getting familiar with essential cyber security

concepts
• Understanding how cryptography supports security
• Learning how to use cryptographic APIs correctly in

Python
• Understanding Web application security issues
• Detailed analysis of the OWASP Top Ten elements
• Putting Web application security in the context of

Python
• Going beyond the low hanging fruits
• Managing vulnerabilities in third party components

https://cydrill.com/
https://cydrill.com/courses/

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 3

Table of contents

Day 1

> Cyber security basics
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Consequences of insecure software

> The OWASP Top Ten 2021
A01 - Broken Access Control

 Access control basics
 Failure to restrict URL access
 Confused deputy

 Insecure direct object reference (IDOR)
 Path traversal
 Lab – Insecure Direct Object Reference
 Path traversal best practices
 Lab – Experimenting with path traversal in Copilot
 Authorization bypass through user-controlled keys
 Case study – Authorization bypass on Facebook
 Lab – Horizontal authorization

 File upload
 Unrestricted file upload
 Good practices
 Lab – Unrestricted file upload

 Cross-site Request Forgery (CSRF)
 Lab – Cross-site Request Forgery
 CSRF best practices
 CSRF defense in depth
 Lab – CSRF protection with tokens

A02 - Cryptographic Failures
 Cryptography for developers

 Cryptography basics

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint
https://owasp.org/www-project-top-ten/
https://cydrill.com/owasp/cross-site-request-forgery-csrf-past-and-future

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 4

 Cryptography in Python
 Elementary algorithms

 Hashing
 Hashing basics
 Hashing in Python
 Lab – Hashing in Python
 Random number generation
 Pseudo random number generators (PRNGs)
 Cryptographically secure PRNGs
 Weak PRNGs
 Using random numbers
 Lab – Using random numbers in Python
 Case study – Equifax credit account freeze

 Confidentiality protection
 Symmetric encryption
 Block ciphers
 Modes of operation
 Modes of operation and IV – best practices
 Symmetric encryption in Python
 Lab – Symmetric encryption in Python
 Asymmetric encryption
 Combining symmetric and asymmetric algorithms

Day 2

> The OWASP Top Ten 2021
A03 - Injection

 Injection principles
 Injection attacks
 SQL injection

 SQL injection basics
 Lab – SQL injection
 Attack techniques
 Content-based blind SQL injection
 Time-based blind SQL injection
 SQL injection best practices

 Input validation
 Parameterized queries
 Lab – Using prepared statements
 Lab – Experimenting with SQL injection in Copilot
 Database defense in depth

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/encryption-with-aes
https://owasp.org/www-project-top-ten/
https://cydrill.com/owasp/sql-injection-is-it-a-solved-problem

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 5

 Case study – Hacking Fortnite accounts
 Code injection

 Code injection via input()
 OS command injection

 Lab – Command injection
 OS command injection best practices
 Avoiding command injection with the right APIs
 Lab – Command injection best practices
 Lab – Experimenting with command injection in Copilot
 Case study – Shellshock
 Lab - Shellshock
 Case study – Command injection via ping

 HTML injection - Cross-site scripting (XSS)
 Cross-site scripting basics
 Cross-site scripting types

 Persistent cross-site scripting
 Reflected cross-site scripting
 Client-side (DOM-based) cross-site scripting

 Lab – Stored XSS
 Lab – Reflected XSS
 Case study – XSS in Fortnite accounts
 XSS protection best practices

 Protection principles - escaping
 XSS protection APIs in Python
 XSS protection in Jinja2
 Lab – XSS fix / stored
 Lab – XSS fix / reflected

A04 - Insecure Design
 The STRIDE model of threats
 Secure design principles of Saltzer and Schroeder

 Economy of mechanism
 Fail-safe defaults
 Complete mediation
 Open design
 Separation of privilege
 Least privilege
 Least common mechanism
 Psychological acceptability

 Client-side security
 Same Origin Policy

 Simple request
 Preflight request

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/cross-site-scripting-an-old-new-threat

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 6

 Cross-Origin Resource Sharing (CORS)
 Lab – Same-origin policy demo

 Frame sandboxing
 Cross-Frame Scripting (XFS) attacks
 Lab - Clickjacking
 Clickjacking beyond hijacking a click
 Clickjacking protection best practices
 Lab – Using CSP to prevent clickjacking

Day 3

> The OWASP Top Ten 2021
A05 - Security Misconfiguration

 Configuration principles
 Server misconfiguration
 Python configuration best practices

 Configuring Flask
 Cookie security

 Cookie attributes
 XML entities

 DTD and the entities
 Entity expansion
 External Entity Attack (XXE)

 File inclusion with external entities
 Server-Side Request Forgery with external entities
 Lab – External entity attack
 Case study – XXE vulnerability in SAP Store
 Preventing XXE
 Lab – Prohibiting DTD
 Lab – Experimenting with XXE in Copilot

A06 - Vulnerable and Outdated Components
 Using vulnerable components
 Untrusted functionality import
 Malicious packages in Python
 Vulnerability management

 Lab – Finding vulnerabilities in third-party components
 Security of AI generated code

 Practical attacks against code generation tools
 Dependency hallucination via generative AI

https://cydrill.com/
https://cydrill.com/courses/
https://owasp.org/www-project-top-ten/

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 7

 Case study – A history of GitHub Copilot weaknesses (up to mid 2024)

A07 - Identification and Authentication Failures
 Authentication

 Authentication basics
 Multi-factor authentication (MFA)
 Case study – PayPal 2FA bypass

 Password management
 Inbound password management

 Storing account passwords
 Password in transit
 Lab – Is just hashing passwords enough?
 Dictionary attacks and brute forcing
 Salting
 Adaptive hash functions for password storage
 Lab – Using adaptive hash functions in Python
 Lab – Using adaptive hash functions in Copilot
 Password policy
 NIST authenticator requirements for memorized secrets
 Case study – The Ashley Madison data breach
 The ultimate crack
 Exploitation and the lessons learned
 Password database migration

A08 - Software and Data Integrity Failures
 Integrity protection

 Message Authentication Code (MAC)
 Calculating HMAC in Python
 Lab – Calculating MAC in Python

 Digital signature
 Digital signature in Python

 Subresource integrity
 Importing JavaScript
 Lab – Importing JavaScript
 Case study – The British Airways data breach

A10 - Server-side Request Forgery (SSRF)
 Server-side Request Forgery (SSRF)
 Case study – SSRF and the Capital One breach

> Wrap up
Secure coding principles

 Principles of robust programming by Matt Bishop

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/brute-force-when-everything-is-a-nail
https://cydrill.com/devops/nist-password-standards

Code responsibly with generative AI in Python https://cydrill.com/courses/

 Page 8

And now what?
 Software security sources and further reading
 Python resources

https://cydrill.com/
https://cydrill.com/courses/

