

 Global Training Provider for
Corporate Software Security

https://cydrill.com/courses/

Web application security for PCI DSS
4.0 compliance

Customized for training requirements compliance (6.2.2)

CYDPCIDSSMs | 2-5-days | On-site or online | Hands-on

The course aligns PCI DSS Requirements 4.0 with foundational concepts of secure coding,
and thus natively serves the compliance with secure coding training requirement (6.2.2).

The comprehensive journey starts with laying down the basics of security, cyber security
and secure coding, as well as PCI DSS itself. Participants then delve deep into secure
configuration, cryptography and protection against malicious software, aligned to the
Requirements.

Requirement 6 specifically focuses on development and maintenance of secure systems
and software, and the corresponding chapter is therefore the broadest one. Topics include
bug categorization, secure design and implementation principles. Approaches to input
validation are followed up by some specific issues, like integer handling, injection or XSS.
We also discuss common software security weaknesses, like error handling or code
quality, as well as security of some commonly used data structures like XML or JSON.

The curriculum continues with a thorough examination of authentication, authorization
and accountability challenges, and concludes with security testing methodology and
specific testing techniques.

The course goes beyond theory, providing hands-on labs and real-world case studies
from the financial sector. Participants emerge with a heightened understanding of secure
coding best practices, ensuring the development of applications that safeguard sensitive
payment card data and comply with the stringent requirements of PCI DSS 4.0 on a yearly
basis.

Note: This course is customized for PCI DSS Requirement 6.2.2 compliance, concerning both
the content and the delivery structure. The table of contents reflects the Java version,
but the course can also come with C#, Python and Node content.

Aligned to the compliance requirements, the delivery of the training days can be done
separately, breaking the course into separate events that can span across year boundaries,
aligned to your long-term compliance plans.

Please contact us to customize the course to your technology stack and compliance needs.

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 2

Cyber security skills and drills

38 LABS

17 CASE STUDIES

Audience
Managers and developers
working on Web applications
in banking and finance

Group size
12 participants

Preparedness
General development

Outline
• Cyber security basics
• PCI DSS 4.0 introduction
• Requirement 1
• Requirement 2
• Requirement 3 and 4
• Requirement 5
• Requirement 6
• Requirement 7
• Requirement 8
• Requirement 9
• Requirement 10
• Requirement 11
• Requirement 12
• Wrap up

Standards and references
OWASP, SEI CERT, CWE and Fortify Taxonomy

What you'll have learned
• Getting familiar with essential cyber security

concepts
• Having essential understanding of PCI DSS

requirements
• Understanding how cryptography supports security
• Input validation approaches and principles
• Access control design and implementation

guidelines
• Understanding security testing methodology and

approaches
• Getting familiar with security testing techniques

and tools

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 3

Table of contents

Day 1

> Cyber security basics
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Consequences of insecure software

> PCI DSS 4.0 introduction
Overview
Data elements
Control objectives and requirements

 Build and Maintain a Secure Network and Systems
 Protect Account Data
 Maintain a Vulnerability Management Program
 Implement Strong Access Control Measures
 Regularly Monitor and Test Networks
 Support Information Security with Organizational Policies and
Programs

The PCI Software Security Framework (SSF)
 Overview
 Secure Software Lifecycle
 Secure Software Standard

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint
https://cydrill.com/cyber-security/pci-dss-requirement-6-training-developers-on-security-techniques/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 4

> Requirement 1
Requirement 1: Install and Maintain Network Security Controls

> Requirement 2
Requirement 2: Apply Secure Configurations to All System
Components
Configuration principles
Server misconfiguration
Cookie security

 Cookie security best practices
 Cookie attributes

XML parsing
 DTD and the entities
 Entity expansion
 External Entity Attack (XXE)

 File inclusion with external entities
 Server-Side Request Forgery with external entities
 Lab – External entity attack
 Case study – XXE vulnerability in SAP Store
 Preventing XXE
 Lab – Prohibiting DTD

> Requirement 3 and 4
Requirement 3: Protect Stored Account Data
Requirement 4: Protect Cardholder Data with Strong
Cryptography …
Information exposure

 Exposure through extracted data and aggregation
 Case study – Strava data exposure
 System information leakage

 Leaking system information
 Information exposure best practices

Cryptography for developers
 Cryptography basics
 Java Cryptographic Architecture (JCA) in brief

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 5

 Elementary algorithms
 Hashing

 Hashing basics
 Common hashing mistakes
 Hashing in Java
 Lab – Hashing in JCA

 Confidentiality protection
 Symmetric encryption

 Block ciphers
 Modes of operation
 Modes of operation and IV – best practices
 Symmetric encryption in Java
 Symmetric encryption in Java with streams
 Lab – Symmetric encryption in JCA

 Asymmetric encryption
 The RSA algorithm
 Using RSA – best practices
 RSA in Java

 Combining symmetric and asymmetric algorithms
 Key exchange and agreement

 Key exchange
 Diffie-Hellman key agreement algorithm
 Key exchange pitfalls and best practices

Day 2

> Requirement 3 and 4
Cryptography for developers

 Elementary algorithms
 Random number generation

 Pseudo random number generators (PRNGs)
 Cryptographically secure PRNGs
 Seeding
 Using virtual random streams
 Weak and strong PRNGs in Java
 Lab – Using random numbers in Java
 True random number generators (TRNG)
 Assessing PRNG strength

 Case study – Equifax credit account freeze
 Integrity protection

 Message Authentication Code (MAC)

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/encryption-with-aes

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 6

 Calculating MAC in Java
 Lab – Calculating MAC in JCA

 Digital signature
 Digital signature with RSA
 Elliptic Curve Cryptography
 ECC basics
 Digital signature with ECC
 Digital signature in Java
 Lab – Digital signature with ECDSA in JCA

 Public Key Infrastructure (PKI)
 Some further key management challenges
 Certificates

 Certificates and PKI
 X.509 certificates
 Chain of trust
 PKI actors and procedures
 Certificate revocation

> Requirement 5
Requirement 5: Protect All Systems and Networks from
Malicious Software
Intrusion detection

 Firewalls and Web Application Firewalls (WAF)
 Intrusion detection and prevention
 Case study – The Marriott Starwood data breach

> Requirement 6
Requirement 6: Develop and Maintain Secure Systems and
Software
Security in the Software Development Lifecycle

 Securing the SDLC
 OWASP Software Assurance Maturity Model (SAMM)
 Microsoft Security Development Lifecycle (MS SDL)
 Build Security In Maturity Model (BSIMM)

Categorization of bugs
 The Seven Pernicious Kingdoms
 Common Weakness Enumeration (CWE)
 CWE Top 25 Most Dangerous Software Weaknesses

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 7

 SEI CERT
 SEI CERT Coding Standards
 Rules and recommendations

Security by design
 The STRIDE model of threats
 Secure design principles of Saltzer and Schroeder

 Economy of mechanism
 Fail-safe defaults
 Complete mediation
 Open design
 Separation of privilege
 Least privilege
 Least common mechanism
 Psychological acceptability

Input validation
 Input validation principles
 Denylists and allowlists
 Case study – Missing input validation in Upserve
 What to validate – the attack surface
 Where to validate – defense in depth
 When to validate – validation vs transformations
 Output sanitization
 Encoding challenges
 Unicode challenges
 Lab – Encoding challenges
 Validation with regex

Day 3

> Requirement 6
Input validation

 Integer handling problems
 Representing signed numbers
 Integer visualization
 Integer overflow
 Lab – Integer overflow

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 8

 Signed / unsigned confusion in Java
 Case study – The Stockholm Stock Exchange
 Integer truncation
 Best practices

 Upcasting
 Precondition testing
 Postcondition testing
 Using big integer libraries
 Integer handling in Java
 Lab – Integer handling

 Files and streams
 Path traversal
 Lab – Path traversal
 Path traversal best practices
 Lab – Path canonicalization

 Unsafe reflection
 Reflection without validation
 Lab – Unsafe reflection

 Unsafe native code
 Native code dependence
 Lab – Unsafe native code
 Best practices for dealing with native code

Injection
 Injection principles
 Injection attacks
 SQL injection

 SQL injection basics
 Lab – SQL injection
 Attack techniques
 Content-based blind SQL injection
 Time-based blind SQL injection
 SQL injection best practices

 Input validation
 Parameterized queries
 Lab – Using prepared statements
 Additional considerations

 Case study – Hacking Fortnite accounts
 Code injection

 OS command injection
 OS command injection best practices
 Using Runtime.exec()

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/sql-injection-is-it-a-solved-problem

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 9

 Case study – Shellshock
 Lab - Shellshock

Cross-site scripting (XSS)
 Cross-site scripting basics
 Cross-site scripting types

 Persistent cross-site scripting
 Reflected cross-site scripting
 Client-side (DOM-based) cross-site scripting

 Lab – Stored XSS
 Lab – Reflected XSS
 Case study – XSS in Fortnite accounts
 XSS protection best practices

 Protection principles - escaping
 XSS protection APIs in Java
 Lab – XSS fix / stored
 Lab – XSS fix / reflected
 Additional protection layers – defense in depth

XML security
 XML validation
 XML injection

 XPath injection
 Blind XPath injection

JSON security
 JSON validation
 JSON injection
 Best practices
 Case study – ReactJS vulnerability in HackerOne

Day 4

> Requirement 6
Code quality

 Code quality and security
 Data handling

 Initialization and cleanup
 Constructors and destructors
 Class initialization cycles

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/cross-site-scripting-an-old-new-threat

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 10

 Lab – Initialization cycles
 Unreleased resource

 The finalize() method – best practices
 Object oriented programming pitfalls

 Accessibility modifiers
 Are accessibility modifiers a security feature?
 Accessibility modifiers – best practices
 Overriding and accessibility modifiers

 Inheritance and overriding
 Mutability

 Lab – Mutable object
 Cloning

Errors
 Error and exception handling principles
 Error handling

 Returning a misleading status code
 Reachable assertion
 Information exposure through error reporting

 Information leakage via error pages
 Exception handling

 In the catch block. And now what?
 Catching NullPointerException
 Empty catch block
 Overly broad throws
 Improper completing of the finally block
 Throwing undeclared checked exceptions
 Swallowed ThreadDeath
 Throwing RuntimeException, Exception, or Throwable
 Lab – Exception handling mess

> Requirement 7
Requirement 7: Restrict Access to System Components and
Cardholder Data…
Authorization

 Access control basics
 Failure to restrict URL access
 Confused deputy

 Insecure direct object reference (IDOR)
 Lab – Insecure Direct Object Reference

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 11

 Authorization bypass through user-controlled keys
 Case study – Authorization bypass on Facebook
 Lab – Horizontal authorization

 File upload
 Unrestricted file upload
 Good practices
 Lab – Unrestricted file upload

> Requirement 8
Requirement 8: Identify Users and Authenticate Access to
System Components
Authentication

 Authentication basics
 Multi-factor authentication (MFA)
 Time-based One Time Passwords (TOTP)
 Authentication weaknesses
 Case study – Equifax Argentina
 Spoofing on the Web
 Case study – PayPal 2FA bypass
 User interface best practices
 Lab – On-line password brute forcing
 Session management

 Session management essentials
 Why do we protect session IDs – Session hijacking
 Session fixation
 Session invalidation
 Session ID best practices
 Cross-site Request Forgery (CSRF)

 Lab – Cross-site Request Forgery
 CSRF best practices
 CSRF defense in depth
 Lab – CSRF protection with tokens

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/spoofing-when-x-is-not-x
https://cydrill.com/owasp/cross-site-request-forgery-csrf-past-and-future

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 12

Day 5

> Requirement 8
Authentication

 Password management
 Inbound password management

 Storing account passwords
 Password in transit
 Lab – Is just hashing passwords enough?
 Dictionary attacks and brute forcing
 Salting
 Adaptive hash functions for password storage
 Lab – Using adaptive hash functions in JCA
 Password policy
 NIST authenticator requirements for memorized secrets
 Password change
 Password recovery issues
 Password recovery best practices
 Lab – Password reset weakness

 Case study – The Ashley Madison data breach
 The ultimate crack
 Exploitation and the lessons learned

 Password database migration
 Outbound password management

 Hard coded passwords
 Best practices
 Lab – Hardcoded password
 Protecting sensitive information in memory
 Challenges in protecting memory
 Storing sensitive data in memory
 Lab – Using secret-handling classes in Java

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/brute-force-when-everything-is-a-nail
https://cydrill.com/devops/nist-password-standards

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 13

> Requirement 9
Requirement 9: Restrict Physical Access to Cardholder Data

> Requirement 10
Requirement 10: Log and Monitor All Access to System
Components and Cardholder Data
Logging and Monitoring

 Logging and monitoring principles
 Log forging
 Log forging – best practices
 Case study – Log interpolation in log4j
 Case study – The Log4Shell vulnerability (CVE-2021-44228)
 Case study – Log4Shell follow-ups (CVE-2021-45046, CVE-2021-45105)
 Lab – Log4Shell
 Logging best practices
 Testing for logging issues

> Requirement 11
Requirement 11: Test Security of Systems and Networks
Regularly
Security testing methodology

 Security testing – goals and methodologies
 Overview of security testing processes
 Identifying assets
 Assigning security requirements
 Lab – Identifying and rating assets
 Threat modeling

 Attacker profiling
 SDL threat modeling
 Mapping STRIDE to DFD
 DFD example
 Lab – SDL threat modelling with OWASP Threat Dragon
 Attack trees
 Attack tree example
 Misuse cases
 Misuse case examples

https://cydrill.com/
https://cydrill.com/courses/

Web application security for PCI DSS 4.0 compliance https://cydrill.com/courses/

 Page 14

 Risk analysis

Security testing techniques and tools
 Fuzzing

> Requirement 12
Requirement 12: Support Information Security with
Organizational Policies and Programs

> Wrap up
Secure coding principles

 Principles of robust programming by Matt Bishop

And now what?
 Software security sources and further reading
 Java resources

https://cydrill.com/
https://cydrill.com/courses/

