

 Code responsibly! https://cydrill.com/courses/

Code responsibly with generative AI
in C++

CYDCpp3dCop | 3 days | On-site or online | Hands-on

Embark on a comprehensive exploration of cybersecurity and secure coding practices in
this intensive three-day course. It is primarily focusing on C++, but also integrates some C
concepts. Based on a primer on machine code, assembly, and memory overlay (Intel and
ARM versions available), the curriculum addresses critical security issues related to
memory management. Various protection techniques on the level of source code,
compiler, OS or hardware are discussed - such as stack smashing protection, ASLR or the
non-execution bit - to understand how they work and make clear what we can and what
we can't expect from them.

The various secure coding subjects are aligned to common software security weakness
categories, such as security features, error handling or code quality. Many of the
weaknesses are, however, linked to missing or improper input validation. In this category
you'll learn about injection, the surprising world of integer overflows, and about handling
file names correctly to avoid path traversal.

Through hands-on labs and real-world case studies, you will navigate the details of secure
coding practices to get essential approaches and skills in cybersecurity.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens.

Nothing.

This variant of the course deals extensively with how certain security problems in code are
handled by GitHub Copilot.

Through a number of hands-on labs participants will get first hand experience about how to
use Copilot responsibly, and how to prompt it to generate the most secure code. In some
cases it is trivial, but in most of the cases it is not; and in yet some other cases it is
basically impossible.

At the same time, the labs provide general experience with using Copilot in everyday coding
practice - what you can expect from it, and what are those areas where you shouldn't rely
on it.

https://cydrill.com/
https://cydrill.com/courses/

Code responsibly with generative AI in C++ https://cydrill.com/courses/

 Page 2

Cyber security skills and drills

30 LABS

6 CASE STUDIES

Audience
C/C++ developers

Group size
12 participants

Preparedness
General C++ and C
development

Outline
• Cyber security basics
• Memory management

vulnerabilities
• Memory management

hardening
• Common software

security weaknesses
• Wrap up

Standards and references
SEI CERT, CWE and Fortify Taxonomy

What you'll have learned
• Getting familiar with essential cyber security

concepts
• Correctly implementing various security features
• Identify vulnerabilities and their consequences
• Learn the security best practices in C++
• Input validation approaches and principles

https://cydrill.com/
https://cydrill.com/courses/

Code responsibly with generative AI in C++ https://cydrill.com/courses/

 Page 3

Table of contents

Day 1

> Cyber security basics
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Cyber security threat types – the STRIDE model
Consequences of insecure software

> Memory management vulnerabilities
Assembly basics and calling conventions

 x64 assembly essentials
 Registers and addressing
 Most common instructions
 Calling conventions on x64

 Calling convention – what it is all about
 Calling convention on x64
 The stack frame
 Stacked function calls

Buffer overflow
 Memory management and security
 Buffer security issues
 Buffer overflow on the stack

 Buffer overflow on the stack – stack smashing
 Exploitation – Hijacking the control flow
 Lab – Buffer overflow 101, code reuse
 Exploitation – Arbitrary code execution
 Injecting shellcode
 Lab – Code injection, exploitation with shellcode

 Buffer overflow on the heap
 Unsafe unlinking
 Case study – Heartbleed

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint

Code responsibly with generative AI in C++ https://cydrill.com/courses/

 Page 4

 Pointer manipulation
 Modification of jump tables
 Overwriting function pointers

Best practices and some typical mistakes
 Unsafe functions
 Dealing with unsafe functions
 Lab – Fixing buffer overflow
 Lab – Experimenting with buffer overflow in Copilot
 Using std::string in C++
 Manipulating C-style strings in C++
 Malicious string termination
 Lab – String termination confusion
 String length calculation mistakes
 Off-by-one errors
 Allocating nothing

Day 2

> Memory management hardening
Securing the toolchain

 Securing the toolchain in C++
 Using FORTIFY_SOURCE
 Lab – Effects of FORTIFY
 AddressSanitizer (ASan)

 Using AddressSanitizer (ASan)
 Lab – Using AddressSanitizer

 Stack smashing protection
 Detecting BoF with a stack canary
 Argument cloning
 Stack smashing protection on various platforms
 SSP changes to the prologue and epilogue
 Lab – Effects of stack smashing protection

Runtime protections
 Runtime instrumentation
 Address Space Layout Randomization (ASLR)

 ASLR on various platforms

https://cydrill.com/
https://cydrill.com/courses/

Code responsibly with generative AI in C++ https://cydrill.com/courses/

 Page 5

 Lab – Effects of ASLR
 Circumventing ASLR – NOP sleds
 Circumventing ASLR – memory leakage

 Non-executable memory areas
 The NX bit
 Write XOR Execute (W^X)
 NX on various platforms
 Lab – Effects of NX
 NX circumvention – Code reuse attacks

 Return-to-libc / arc injection
 Return Oriented Programming (ROP)

 Protection against ROP

> Common software security weaknesses
Security features

 Authentication
 Password management

 Inbound password management
 Storing account passwords
 Password in transit
 Lab – Is just hashing passwords enough?
 Dictionary attacks and brute forcing
 Salting
 Adaptive hash functions for password storage
 Password policy
 NIST authenticator requirements for memorized secrets
 Case study – The Ashley Madison data breach
 The ultimate crack
 Exploitation and the lessons learned
 Password database migration

Code quality
 Code quality and security
 Data handling

 Type mismatch
 Lab – Type mismatch
 Initialization and cleanup

 Constructors and destructors
 Initialization of static objects
 Lab – Initialization cycles

 Unreleased resource
 Array disposal in C++

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/brute-force-when-everything-is-a-nail
https://cydrill.com/devops/nist-password-standards

Code responsibly with generative AI in C++ https://cydrill.com/courses/

 Page 6

 Lab – Mixing delete and delete[]
 Object oriented programming pitfalls

 Accessibility modifiers
 Are accessibility modifiers a security feature?

 Inheritance and object slicing
 Implementing the copy operator
 The copy operator and mutability
 Mutability

 Mutable predicate function objects
 Lab – Mutable predicate function object

Day 3

> Common software security weaknesses
Input validation

 Input validation principles
 Denylists and allowlists
 What to validate – the attack surface
 Where to validate – defense in depth
 When to validate – validation vs transformations
 Injection

 Code injection
 OS command injection
 Lab – Command injection
 OS command injection best practices
 Avoiding command injection with the right APIs
 Lab – Command injection best practices
 Lab – Experimenting with command injection in Copilot
 Case study – Shellshock
 Lab - Shellshock
 Case study – Command injection via ping

 Integer handling problems
 Representing signed numbers
 Integer visualization
 Integer promotion
 Integer overflow
 Lab – Integer overflow
 Lab – Experimenting with integer overflow in Copilot
 Signed / unsigned confusion

https://cydrill.com/
https://cydrill.com/courses/

Code responsibly with generative AI in C++ https://cydrill.com/courses/

 Page 7

 Case study – The Stockholm Stock Exchange
 Lab – Signed / unsigned confusion
 Lab – Experimenting with signed / unsigned confusion in Copilot
 Integer truncation
 Lab – Integer truncation
 Lab – Experimenting with integer truncation in Copilot
 Case study – WannaCry
 Best practices

 Upcasting
 Precondition testing
 Postcondition testing
 UBSan changes to arithmetics
 Lab – Handling integer overflow on the toolchain level in C++
 Best practices in C++
 Lab – Integer handling best practices in C++

 Files and streams
 Path traversal
 Lab – Path traversal
 Path traversal best practices
 Lab – Path canonicalization
 Lab – Experimenting with path traversal in Copilot

> Wrap up
Secure coding principles

 Principles of robust programming by Matt Bishop
 Secure design principles of Saltzer and Schroeder

And now what?
 Software security sources and further reading
 C and C++ resources

https://cydrill.com/
https://cydrill.com/courses/

