
 

 Global Training Provider for 
Corporate Software Security 

https://cydrill.com/courses/ 

 

  

Secure coding in C and C++ 
masterclass - ARM 

CYDCp5d_ARM  |  5 days  |  On-site or online  |  Hands-on 

Your application written in C and C++ is tested functionally, so you are done, right? But did 
you consider feeding in incorrect values? 16Gbs of data? A null? An apostrophe? Negative 
numbers, or specifically -1 or -2^31? Because that's what the bad guys will do – and the list 
is far from complete. 

Testing for security needs a remarkable software security expertise and a healthy level of 
paranoia, and this is what this course provides: a strong emotional engagement by lots of 
hands-on labs and stories from real life. 

A special focus is given to finding all discussed issues during testing, and an overview is 
provided on security testing methodology, techniques and tools. 

So that you are prepared for the forces of the dark side. 

So that nothing unexpected happens. 

Nothing. 

 

  

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 2 

Cyber security skills and drills 

 
41 LABS 

 
5 CASE STUDIES 

 

Audience 
C/C++ developers 

Group size 
12 participants 

Preparedness 
General C/C++ development 

Outline 
• Cyber security basics 
• Memory management 

vulnerabilities 
• Memory management 

hardening 
• Common software 

security weaknesses 
• Cryptography for 

developers 
• Security testing 
• Wrap up 

Standards and references 
SEI CERT, CWE and Fortify Taxonomy 

What you'll have learned 
• Getting familiar with essential cyber security 

concepts 
• Identify vulnerabilities and their consequences 
• Learn the security best practices in C and C++ 
• Understanding how cryptography supports security 
• Learning how to use cryptographic APIs correctly in 

C and C++ 
• Input validation approaches and principles 
• Understanding security testing methodology and 

approaches 
• Getting familiar with security testing techniques 

and tools 

  

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 3 

Table of contents 

Day 1 

> Cyber security basics 
What is security? 
Threat and risk 
Cyber security threat types – the CIA triad 
Cyber security threat types – the STRIDE model 
Consequences of insecure software 
Constraints and the market 

> Memory management vulnerabilities 
Assembly basics and calling conventions 

 ARM assembly essentials 
 Registers and addressing 
 Basic ARM64 instructions 
 ARM calling conventions 

 The calling convention 
 The stack frame 
 Calling convention implementation on ARM64 
 Stacked function calls 

Buffer overflow 
 Memory management and security 
 Vulnerabilities in the real world 
 Buffer security issues 
 Buffer overflow on the stack 

 Buffer overflow on the stack – stack smashing 
 Exploitation – Hijacking the control flow 
 Lab – Buffer overflow 101, code reuse 
 Exploitation – Arbitrary code execution 
 Injecting shellcode 
 Lab – Code injection, exploitation with shellcode 

 Buffer overflow on the heap 

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 4 

 Unsafe unlinking 
 Case study – Heartbleed 

 Pointer manipulation 
 Modification of jump tables 
 GOT and PLT 
 Overwriting function pointers 

Best practices and some typical mistakes 
 Unsafe functions 
 Dealing with unsafe functions 
 Lab – Fixing buffer overflow 
 What's the problem with asctime()? 
 Lab – The problem with asctime() 
 Using std::string in C++ 

Day 2 

> Memory management vulnerabilities 
Unterminated strings 
readlink() and string termination 
Manipulating C-style strings in C++ 
Malicious string termination 
 Lab – String termination confusion 
String length calculation mistakes 
Off-by-one errors 
Allocating nothing 
Testing for typical mistakes 

> Memory management hardening 
Securing the toolchain 

 Securing the toolchain in C and C++ 
 Compiler warnings and security 
 Using FORTIFY_SOURCE 
 Lab – Effects of FORTIFY 
 AddressSanitizer (ASan) 

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 5 

 Using AddressSanitizer (ASan) 
 Lab – Using AddressSanitizer 

 RELRO protection against GOT hijacking 
 Heap overflow protection 
 Stack smashing protection 

 Detecting BoF with a stack canary 
 Argument cloning 
 Stack smashing protection on various platforms 
 SSP changes to the prologue and epilogue 
 Lab – Effects of stack smashing protection 
 Bypassing stack smashing protection 
 Heap cookies and guard pages 

Runtime protections 
 Runtime instrumentation 
 Address Space Layout Randomization (ASLR) 

 ASLR on various platforms 
 Lab – Effects of ASLR 
 Circumventing ASLR – NOP sleds 
 Circumventing ASLR – memory leakage 

 Non-executable memory areas 
 The NX bit 
 Write XOR Execute (W^X) 
 NX on various platforms 
 Lab – Effects of NX 
 NX circumvention – Code reuse attacks 

 Return-to-libc / arc injection 
 Return Oriented Programming (ROP) 

 Lab – ROP demonstration 
 Protection against ROP 
 ARM-specific ROP protection techniques 

> Common software security weaknesses 
Code quality 

 Code quality and security 
 Data handling 

 Type mismatch 
 Lab – Type mismatch 
 Initialization and cleanup 

 Constructors and destructors 
 Initialization of static objects 

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 6 

 Lab – Initialization cycles 
 Array disposal in C++ 
 Lab – Mixing delete and delete[] 

 Memory and pointers 
 Memory and pointer issues 
 Pointer handling pitfalls 
 Null pointers 

 NULL dereference 
 NULL dereference in pointer-to-member operators 
 Testing for null pointers 

 Pointer usage in C and C++ 
 Use after free 
 Lab – Use after free 
 Lab – Runtime instrumentation 
 Double free 
 Smart pointers 
 Smart pointer best practices 

 Testing for memory and pointer issues 

Day 3 

> Common software security weaknesses 
Time and state 

 Race conditions 
 File race condition 

 Time of check to time of usage – TOCTTOU 
 TOCTTOU attacks in practice 
 Lab - TOCTTOU 
 Insecure temporary file 

 Testing for time and state problems 

> Cryptography for developers 
Cryptography basics 
OpenSSL in brief 
Elementary algorithms 

 Random number generation 
 Pseudo random number generators (PRNGs) 
 Cryptographically secure PRNGs 
 Seeding 

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 7 

 Using virtual random streams 
 Weak and strong PRNGs 
 Using random numbers in OpenSSL 
 Lab – Using random numbers in OpenSSL 
 True random number generators (TRNG) 
 Assessing PRNG strength 
 Case study – Equifax credit account freeze 

 Hashing 
 Hashing basics 
 Common hashing mistakes 
 Hashing in OpenSSL 
 Lab – Hashing in OpenSSL 

Confidentiality protection 
 Symmetric encryption 

 Block ciphers 
 Modes of operation 
 Modes of operation and IV – best practices 
 Symmetric encryption in OpenSSL 
 Lab – Symmetric encryption in OpenSSL 

 Asymmetric encryption 
 The RSA algorithm 

 Using RSA – best practices 
 RSA in OpenSSL 

 Combining symmetric and asymmetric algorithms 
 Key exchange and agreement 

 Key exchange 
 Diffie-Hellman key agreement algorithm 
 Key exchange pitfalls and best practices 

Integrity protection 
 Message Authentication Code (MAC) 

 Calculating MAC in OpenSSL 
 Lab – Calculating MAC in OpenSSL 

 Digital signature 
 Digital signature with RSA 
 Elliptic Curve Cryptography 

 ECC basics 
 Digital signature with ECC 

 Digital signature in OpenSSL 
 ECDSA in OpenSSL 

 Lab – Digital signature with ECDSA in OpenSSL 

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/encryption-with-aes


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 8 

Public Key Infrastructure (PKI) 
 Some further key management challenges 
 Certificates 

 Certificates and PKI 
 X.509 certificates 
 Chain of trust 
 PKI actors and procedures 
 Certificate revocation 
 Security testing of certificates and PKI 

Transport security 
 The TLS protocol 

 TLS basics 
 TLS features (changes in v1.3) 
 The handshake in a nutshell (v1.3) 
 TLS best practices 
 Testing transport security 

Day 4 

> Common software security weaknesses 
Input validation 

 Input validation principles 
 Denylists and allowlists 
 What to validate – the attack surface 
 Where to validate – defense in depth 
 When to validate – validation vs transformations 
 Injection 

 Injection principles 
 Injection attacks 
 Code injection 

 OS command injection 
 Lab – Command injection 
 OS command injection best practices 
 Avoiding command injection with the right APIs 
 Lab – Command injection best practices 

 Case study – Shellshock 
 Lab - Shellshock 
 Testing for command injection 

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 9 

 Process control 
 Library injection 
 Lab – Library hijacking 
 Library injection best practices 

 Integer handling problems 
 Representing signed numbers 
 Integer visualization 
 Integer promotion 
 Integer overflow 
 Lab – Integer overflow 
 Signed / unsigned confusion 
 Case study – The Stockholm Stock Exchange 
 Lab – Signed / unsigned confusion 
 Integer truncation 
 Lab – Integer truncation 
 Case study – WannaCry 
 Best practices 

 Upcasting 
 Precondition testing 
 Postcondition testing 
 Using big integer libraries 
 Best practices in C 
 Lab – Handling integer overflow on the toolchain level in C and C++ 
 Best practices in C++ 
 Lab – Integer handling best practices in C++ 

 Testing for numeric problems 
 Files and streams 

 Path traversal 
 Lab – Path traversal 
 Path traversal-related examples 
 Virtual resources 
 Path traversal best practices 
 Lab – Path canonicalization 
 Testing for path traversal 

 Format string issues 
 The problem with printf() 
 Lab – Exploiting format string 

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 10 

Day 5 

> Security testing 
Security testing vs functional testing 
Manual and automated methods 
Black box, white box, and hybrid testing 
Security testing methodology 

 Security testing – goals and methodologies 
 Overview of security testing processes 
 Identifying and rating assets 

 Preparation and scoping 
 Identifying assets 
 Identifying the attack surface 
 Assigning security requirements 
 Lab – Identifying and rating assets 

 Threat modeling 
 SDL threat modeling 
 Mapping STRIDE to DFD 
 DFD example 
 Attack trees 
 Attack tree example 
 Lab – Crafting an attack tree 
 Misuse cases 
 Misuse case examples 
 Risk analysis 
 Lab – Risk analysis 

 Accomplishing the tests 
 Reporting, recommendations, and review 

Security testing techniques and tools 
 Code analysis 

 Static Application Security Testing (SAST) 
 Lab – Using static analysis tools 

 Dynamic analysis 
 Security testing at runtime 
 Penetration testing 
 Memory inspection and analysis 
 Lab – Dumping process memory 

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/penetration-testing-what-it-can-and-cannot-do


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 11 

 Stress testing 
 Dynamic Application Security Testing (DAST) 
 Fuzzing 
 Fuzzing techniques 
 Fuzzing – Observing the process 
 American Fuzzy Lop (AFL) 

> Common software security weaknesses 
Errors 

 Error and exception handling principles 
 Error handling 

 Returning a misleading status code 
 Error handling in C 
 Error handling in C++ 
 Using std::optional safely 
 Information exposure through error reporting 

 Exception handling 
 In the catch block. And now what? 
 Empty catch block 
 Exception handling in C++ 
 Lab – Exception handling mess 

 Testing for error and exception handling problems 

Denial of service 
 Flooding 
 Resource exhaustion 
 Sustained client engagement 
 Denial of service problems in C/C++ 
 Infinite loop 
 Economic Denial of Sustainability (EDoS) 
 Amplification 

 Some amplification examples 
 Algorithmic complexity issues 

 Regular expression denial of service (ReDoS) 
 Lab – ReDoS 
 Dealing with ReDoS 

 Hash table collision 
 How do hash tables work? 
 Hash collision against hash tables 

https://cydrill.com/
https://cydrill.com/courses/


 

Secure coding in C and C++ masterclass - ARM https://cydrill.com/courses/ 

 

   Page 12 

> Wrap up 
Secure coding principles 

 Principles of robust programming by Matt Bishop 
 Secure design principles of Saltzer and Schroeder 

And now what? 
 Software security sources and further reading 
 C and C++ resources 
 Security testing resources 

https://cydrill.com/
https://cydrill.com/courses/

