

 Global Training Provider for
Corporate Software Security

https://cydrill.com/courses/

Web application security in Java
CELJvWeb | 1 year subscription | e-Learning | Online VM

The course provides a comprehensive exploration of secure coding principles and
practices tailored specifically for Java developers. Starting off from the foundations of
cybersecurity, you will understand the consequences of insecure code by examining
threats through the lens of the CIA triad.

In the main part of the material, you will systematically walk through the various
vulnerabilities outlined in the OWASP Top Ten. As you progress through the modules
investigating the intricacies of authentication and authorization, through realizing the
practical aspects of cryptography, to tackling injection attacks, you will gain a deep
understanding of both theoretical concepts and practical skills for securing Java web
applications. Further subjects are aligned to some common software security weakness
types, such as error handling, code quality or denial of service.

These modules go beyond just the theory. Not only do they identify vulnerabilities, show
their consequences, and detail the best practices, but - through hands-on labs and real-
world case studies - they offer practical experience in identifying, exploiting, and
mitigating these security risks within Java-based web applications.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens in your code.

Nothing.

Note: This course content is available as an e-learning subscription. We reserve a period
of 3 months to digest the foundational material, after which we activate shorter learning
units on a monthly basis. This gives secure coding efforts an initial boost, and builds up
sustained readiness over time. These learning units are indicated in red in the table of
contents below.

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 2

Cyber security skills and drills

Foundational material Monthly learning units

50 LABS

20 CASE STUDIES

2-3 LABS

CASE STUDY

Audience
Java developers working on Web
applications

Preparedness
General Java and Web development

Outline
• Cyber security basics
• The OWASP Top Ten
• A01 - Broken Access Control
• A02 - Cryptographic Failures
• Cryptography
• A03 - Injection
• A04 - Insecure Design
• A05 - Security Misconfiguration
• A06 - Vulnerable and Outdated

Components
• A07 - Identification and

Authentication Failures
• A08 - Software and Data

Integrity Failures
• A09 - Security Logging and

Monitoring Failures
• A10 - Server-Side Request

Forgery
• Wrap up

Standards and references
OWASP, SEI CERT, CWE and Fortify Taxonomy

What you'll have learned
• Getting familiar with essential cyber security

concepts
• Identify Web application vulnerabilities and

their consequences
• Learn the security best practices in C#
• Input validation approaches and principles
• Understanding Web application security

issues
• Detailed analysis of the OWASP Top Ten

elements
• Putting Web application security in the

context of Java
• Going beyond the low hanging fruits

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 3

Table of contents

> Cyber security basics
Security basics

 What is security?
 Threat and risk

Cyber security threats
 Cyber security threat types – the CIA triad

Insecure software
 Consequences of insecure software
 Constraints and the market
 The dark side

> The OWASP Top Ten
Introduction

 OWASP and the Top 10
 Is it a standard?
 Methodology
 The OWASP Top Ten 2021

> A01 - Broken Access Control
Authorization

 Access control basics
 Confused deputy

Insecure Direct Object Reference
 Insecure direct object reference (IDOR)
 Path traversal
 Lab – Insecure Direct Object Reference
 Path traversal best practices

Horizontal authorization
 Authorization bypass through user-controlled keys
 Case study – Authorization bypass on Facebook
 Lab – Horizontal authorization

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/cyber-security/cyber-security-from-a-galactic-viewpoint
https://owasp.org/www-project-top-ten

Web application security in Java https://cydrill.com/courses/

 Page 4

File upload
 Unrestricted file upload
 Good practices
 Lab – Unrestricted file upload

Cross-site Request Forgery (CSRF)
 Lab – Cross-site Request Forgery

Cross-site Request Forgery (CSRF) best practices
 CSRF best practices
 CSRF defense in depth
 Lab – CSRF protection with tokens

> A02 - Cryptographic Failures
> Cryptography

Information exposure
 Exposure through extracted data and aggregation
 Case study – Strava data exposure
 Leaking system information

Cryptography for developers
 Cryptography basics
 Java Cryptographic Architecture (JCA) in brief

PRNG
 Random number generation
 Pseudo random number generators (PRNGs)
 Cryptographically secure PRNGs
 Using virtual random streams
 Case study – Equifax credit account freeze

PRNG in Java
 Weak and strong PRNGs in Java
 Using random numbers in Java
 Lab – Using random numbers in Java

Hashing
 Hashing basics
 Common hashing mistakes
 Hashing in Java
 Lab – Hashing in JCA

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 5

Encryption
 Confidentiality protection
 Symmetric encryption
 Block ciphers
 Modes of operation
 Modes of operation and IV – best practices

Encryption in Java
 Symmetric encryption in Java
 Symmetric encryption in Java with streams
 Lab – Symmetric encryption in JCA

Asymmetric encryption
 The RSA algorithm
 Using RSA – best practices
 RSA in Java
 Combining symmetric and asymmetric algorithms

> A03 - Injection
Injection problems

 Injection principles
 Injection attacks

SQL injection
 SQL injection basics
 Lab – SQL injection

SQL injection attack techniques
 Attack techniques
 Content-based blind SQL injection
 Time-based blind SQL injection

SQL injection best practices
 Input validation
 Parameterized queries
 Lab – Using prepared statements

SQL injection additional considerations
 Database defense in depth
 Case study – Hacking Fortnite accounts

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/encryption-with-aes

Web application security in Java https://cydrill.com/courses/

 Page 6

Code injection - OS command injection
 Code injection
 OS command injection

OS command injection best practices
 Using Runtime.exec()
 Using ProcessBuilder
 Case study – Shellshock
 Lab - Shellshock

HTML injection - Cross-site scripting (XSS)
 Cross-site scripting basics
 Persistent cross-site scripting
 Reflected cross-site scripting
 Client-side (DOM-based) cross-site scripting

XSS attacks
 Lab – Stored XSS
 Lab – Reflected XSS
 Case study – XSS in Fortnite accounts

XSS best practices 1
 Protection principles - escaping
 XSS protection APIs in Java
 Lab – XSS fix / stored

XSS best practices 2
 XSS protection in JSP
 Lab – XSS fix / reflected
 Additional protection layers – defense in depth

Advanced XSS (Unit 5)
 Additional XSS exploitation and protection
 Lab – Stored XSS in attribute
 Lab – XSS fix / stored (in HTML attributes)
 Lab – XSS fix / stored (selective)
 Client-side protection principles

Template injection (Unit 6)
 Script injection
 Server-side template injection (SSTI)
 Case study – Template injection in Shopify leading to RCE

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/owasp/cross-site-scripting-an-old-new-threat

Web application security in Java https://cydrill.com/courses/

 Page 7

 Client-side template injection (CSTI) in Angular
 Client-side template injection (CSTI) in React

Expression language (EL) injection (Unit 6)
 SpEL injection
 Lab – SpEL injection
 SpEL injection – testing and best practices

Input validation principles 1 (Unit 1)
 Input validation principles
 Denylists and allowlists
 Data validation techniques
 Lab – Input validation

Input validation principles 2 (Unit 1)
 What to validate – the attack surface
 Where to validate – defense in depth
 When to validate – validation vs transformations
 Case study – Missing input validation in Upserve

Input validation principles 3 (Unit 1)
 Output sanitization
 Encoding challenges
 Unicode challenges
 Lab – Encoding challenges
 Validation with regex

Integer handling problems (Unit 2)
 Representing signed numbers
 Integer visualization
 Integer overflow
 Lab – Integer overflow

Integer handling problems 2 (Unit 2)
 Signed / unsigned confusion in Java
 Case study – The Stockholm Stock Exchange
 Integer truncation

Integer best practices (Unit 2)
 Upcasting
 Precondition testing
 Postcondition testing

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 8

 Using big integer libraries

Integer best practices in Java (Unit 2)
 Integer handling in Java
 Lab – Integer handling

Other numeric problems (Unit 2)
 Division by zero
 Working with floating-point numbers

Path traversal and file validation (Unit 3)
 Path traversal
 Lab – Path traversal
 Path traversal-related examples
 Additional challenges in Windows
 Virtual resources
 Path traversal best practices
 Lab – Path canonicalization

Unsafe reflection (Unit 4)
 Reflection without validation
 Lab – Unsafe reflection

Unsafe native code (JNI) (Unit 4)
 Native code dependence
 Lab – Unsafe native code
 Best practices for dealing with native code

> A04 - Insecure Design
Insecure design

 The STRIDE model of threats
 Secure design principles of Saltzer and Schroeder

Insecure design - Saltzer and Schroeder 1
 Economy of mechanism
 Fail-safe defaults
 Complete mediation
 Open design

Insecure design - Saltzer and Schroeder 2
 Separation of privilege
 Least privilege

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 9

 Least common mechanism
 Psychological acceptability

Client-side security
 Same Origin Policy
 Simple request
 Preflight request
 Cross-Origin Resource Sharing (CORS)

Clickjacking
 Frame sandboxing
 Cross-Frame Scripting (XFS) attacks
 Lab - Clickjacking
 Clickjacking beyond hijacking a click

Anti-clickjacking best practices
 Clickjacking protection best practices
 Lab – Using CSP to prevent clickjacking

> A05 - Security Misconfiguration
Misconfiguration and XML parsing

 Configuration principles
 XML Entities
 DTD and the entities
 Entity expansion

XML External Entity (XXE)
 File inclusion with external entities
 Server-Side Request Forgery with external entities
 Lab – External entity attack
 Case study – XXE vulnerability in SAP Store

XXE best practices
 Preventing XXE
 Lab – Prohibiting DTD

> A06 - Vulnerable and Outdated Components
Vulnerable components and dependencies

 Using vulnerable components
 Assessing the environment

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 10

 Hardening
 Untrusted functionality import

Vulnerability management
 Patch management
 Vulnerability management
 Vulnerability databases
 Lab – Finding vulnerabilities in third-party components

> A07 - Identification and Authentication Failures
Authentication

 Authentication basics
 Multi-factor authentication (MFA)
 Authentication weaknesses
 Case study – PayPal 2FA bypass

Session security
 Session management essentials
 Why do we protect session IDs – Session hijacking
 Session fixation
 Session ID best practices

Password management
 Storing account passwords
 Password in transit
 Lab – Is just hashing passwords enough?

Password storage
 Dictionary attacks and brute forcing
 Salting
 Adaptive hash functions for password storage
 Lab – Using adaptive hash functions in JCA

Password policy
 NIST authenticator requirements for memorized secrets

Password storage - a case study
 Case study – The Ashley Madison data breach
 The dictionary attack
 The ultimate crack
 Exploitation and the lessons learned

https://cydrill.com/
https://cydrill.com/courses/
https://cydrill.com/devops/cvss-measuring-the-unmeasurable
https://cydrill.com/owasp/brute-force-when-everything-is-a-nail
https://cydrill.com/devops/nist-password-standards

Web application security in Java https://cydrill.com/courses/

 Page 11

Additional password management challenges
 Password database migration
 (Mis)handling null passwords

Password auditing (Unit 7)
 Using password cracking tools
 Password cracking in Windows
 Lab – Password audit with John the Ripper
 On-line password brute forcing
 Lab – On-line password brute forcing
 Password recovery issues
 Password recovery best practices
 Lab – Password reset weakness

Outbound password management (Unit 7)
 Hard coded passwords
 Best practices
 Lab – Hardcoded password
 Case study – Hard-coded credentials in MyCar vehicle control app

Protecting secrets in memory (Unit 7)
 Challenges in protecting memory
 Storing sensitive data in memory
 Lab – Using secret-handling classes in Java

> A08 - Software and Data Integrity Failures
> Cryptography

Integrity protection and MAC
 Integrity protection
 Message Authentication Code (MAC)
 Calculating MAC in Java
 Lab – Calculating MAC in JCA

Digital signatures
 Digital signature
 Digital signature with RSA
 ECC basics
 Digital signature with ECC
 Lab – Digital signature with ECDSA in JCA

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 12

Subresource integrity
 Importing JavaScript
 Lab – Importing JavaScript
 Case study – The British Airways data breach

Insecure deserialization
 Serialization and deserialization challenges
 Integrity – deserializing untrusted streams
 Integrity – deserialization best practices
 Using readObject
 Look ahead deserialization

Property Oriented Programming
 Property Oriented Programming (POP)
 Creating a POP payload
 Lab – Creating a POP payload

POP exploitation and best practices
 Lab – Using the POP payload
 Summary – POP best practices
 DoS with deserialization
 Lab – Billion laughs with deserialization

> A09 - Security Logging and Monitoring Failures
Logging

 Logging and monitoring principles
 Insufficient logging
 Case study – Plaintext passwords at Facebook
 Logging best practices

Log forging (Unit 6)
 CRLF injection
 Log forging
 Log forging – best practices
 Case study – Log interpolation in log4j
 Case study – The Log4Shell vulnerability (CVE-2021-44228)
 Case study – Log4Shell follow-ups (CVE-2021-45046, CVE-2021-45105)
 Lab – Log4Shell

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 13

Monitoring (Unit 6)
 Monitoring best practices
 Firewalls and Web Application Firewalls (WAF)
 Intrusion detection and prevention
 Case study – The Marriott Starwood data breach

> A10 - Server-Side Request Forgery
SSRF

 Server-side Request Forgery (SSRF)
 Case study – SSRF and the Capital One breach

> Error handling (Unit 8)
Principles

 Error and exception handling principles
 Information exposure through error reporting
 Information leakage via error pages
 Returning a misleading status code
 Reachable assertion

Exception handling
 In the catch block. And now what?
 Catching NullPointerException
 Empty catch block
 Overly broad throws
 Improper completing of the finally block
 Throwing undeclared checked exceptions
 Swallowed ThreadDeath
 Throwing RuntimeException, Exception, or Throwable
 Lab – Exception handling mess

> Denial of service (Unit 8)
 Flooding
 Resource exhaustion

Sustained client engagement
 Infinite loop
 Denial of service problems in Java
 Case study – DoS against Tesla GUI via malicious web page

https://cydrill.com/
https://cydrill.com/courses/

Web application security in Java https://cydrill.com/courses/

 Page 14

 Economic Denial of Sustainability (EDoS)

Amplification
 Some amplification examples

Algorithmic complexity issues
 Regular expression denial of service (ReDoS)
 Lab – ReDoS
 Dealing with ReDoS
 Hash table collision
 How do hash tables work?
 Hash collision against hash tables

> Code quality (Unit 9)
Introduction

 Code quality and security

Data - initialization
 Uninitialized variable
 Constructors and destructors
 Class initialization cycles
 Lab – Initialization cycles

Object Oriented Programming
 Are accessibility modifiers a security feature?
 Accessibility modifiers – best practices
 Overriding and accessibility modifiers
 Inheritance and overriding
 Implementing equals()
 Mutability
 Lab – Mutable object

> Wrap up
Software security principles

 Principles of robust programming by Matt Bishop

Sources and further readings
 Software security sources and further reading
 Java resources

https://cydrill.com/
https://cydrill.com/courses/

